Phase variation of Ag43 is independent of the oxidation state of OxyR.
نویسندگان
چکیده
OxyR is a DNA binding protein that differentially regulates a cell's response to hydrogen peroxide-mediated oxidative stress. We previously reported that the reduced form of OxyR is sufficient for repression of transcription of agn43 from unmethylated template DNA, which is essential for deoxyadenosine methylase (Dam)- and OxyR-dependent phase variation of agn43. Here we provide evidence that the oxidized form of OxyR [OxyR(ox)] also represses agn43 transcription. In vivo, we found that exogenous addition of hydrogen peroxide, sufficient to oxidize OxyR, did not affect the expression of agn43. OxyR(ox) repressed in vitro transcription but only from an unmethylated agn43 template. The -10 sequence of the promoter and three Dam target sequences were protected in an in vitro DNase I footprint assay by OxyR(ox). Furthermore, OxyR(ox) bound to the agn43 regulatory region DNA with an affinity similar to that for the regulatory regions of katG and oxyS, which are activated by OxyR(ox), indicating that binding at agn43 can occur at biologically relevant concentrations. OxyR-dependent regulation of Ag43 expression is therefore unusual in firstly that OxyR binding at agn43 is dependent on the methylation state of Dam target sequences in its binding site and secondly that OxyR-dependent repression appears to be independent of hydrogen-peroxide mediated oxidative stress and the oxidation state of OxyR.
منابع مشابه
Differential expression of the Escherichia coli autoaggregation factor antigen 43.
Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Due to its excellent cell-to-cell aggregation characteristics, Ag43 expression confers clumping and fluffing of cells and promotes biofilm formation. Ag43 expression is repressed by the cellular redox sensor OxyR. Here we used mutant versions of OxyR that are locked in either the reduced or the oxidi...
متن کاملAntigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation.
Antigen 43 (Ag43), the product of the flu gene, is a surface-displayed autotransporter protein of Escherichia coli. Ag43 is responsible for the autoaggregation and flocculation of static liquid cultures of many E. coli strains. The expression of Ag43 has been reported to be phase variable and controlled by the product of the oxyR gene. Type 1 fimbriae are thin adhesive thread-like surface organ...
متن کاملThe cell surface protein Ag43 facilitates phage infection of Escherichia coli in the presence of bile salts and carbohydrates.
It was found that infection of Escherichia coli by bacteriophage lambda is inhibited in the presence of certain bile salts and carbohydrates when cells are in the "OFF" state for production of the phase-variable cell surface protein antigen 43 (Ag43). The inhibition of phage growth was found to be due to a significant impairment in the process of phage adsorption. Expression of the gene encodin...
متن کاملSTM2209-STM2208 (opvAB): A Phase Variation Locus of Salmonella enterica Involved in Control of O-Antigen Chain Length
STM2209 and STM2208 are contiguous loci annotated as putative protein-coding genes in the chromosome of Salmonella enterica. Lack of homologs in related Enterobacteria and low G+C content suggest that S. enterica may have acquired STM2209-STM2208 by horizontal transfer. STM2209 and STM2208 are co-transcribed from a promoter upstream STM2209, and their products are inner (cytoplasmic) membrane p...
متن کاملDynamic Model For Production of Biohydrogen Via Water- Gas Shift Reaction (RESEARCH NOTE)
In design of anaerobic bioreactor, rate equation is commonly used. Mathematical model was developed at steady state condition, to project concentration of gaseous substrate and product in biological oxidation of carbon monoxide with water to produce hydrogen and carbon dioxide. The concept of bioconversion was based on transport of CO from gas phase to liquid phase, as the CO consumption was in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 185 7 شماره
صفحات -
تاریخ انتشار 2003